Low-Power Acoustic Modem for Dense Underwater Sensor Networks

Jack Wills, Wei Ye, John Heidemann

USC Information Sciences Institute
Research Goals

- Bring sensor networks underwater
 - lots (10s, 100s)
 - of smart (able to compute and decide locally)
 - communicating (talk with each other, not just central database)
 - sensing and acting computers

- Applications
 - frequent 4-D seismic for shallow- / deep-water fields
 - assistance during underwater construction
 - flocks of underwater robots
underwater nodes
some attached to buoys
 alternative: could be a few wired and attached to sea floor
some attached to robots
one or several “base stations” with internet connectivity

communications
 underwater acoustic modems
 2nd tier of buoy-based radios (802.11?)
multi-access

Architecture described at WCNC, April 2006
Challenges and Approaches

- Acoustic channel is a strong challenge
 - Significant multi-path effects
 - Curved paths due to uneven temperature
 - Various noise such as bubbles and man-made objects
 - Large propagation delay (1500m/s)
 - High transmission power over long distance

- Existing work: increasingly sophisticated physical layer (PHY) techniques

- Our approach: short-range (< 500m) over multiple hops to avoid PHY complexities and conserve energy
Design Rationale

- **Low cost**
 - Enables large deployment of modem-equipped sensors (e.g., hundreds)

- **Low power**
 - Only support short-range communication with simple FSK modulation and non-coherent detection
 - Ultra-low power wakeup receiver enables deep sleep

- **Support higher layer protocols**
 - Time synchronization, RSSI, etc.

- **Match expected channel characteristics**
 - For example can add FEC in software
Frequency Selection

Source: Underwater Acoustic Systems Analysis
William S. Burdic

Graphs showing frequency selection and attenuation.

Noise spectrum level (dB/μPa/Hz) vs. frequency (Hz).

Low Band: Distant shipping
Mid band: Wind-related Kaupen noise
Hi band: Thermal noise

Sea state levels: 0, 1, 3, 6.
Acoustic Transmission Formats

- **Wake-up channel**
 - On-off keying
 - 18 kHz tone
 - Ultra-low power receiver

- **Data channel**
 - Binary Frequency-Shift Keying (BFSK)
 - Mark – 17 kHz
 - Space – 19 kHz
 - Data rate – 1kbps nominal
Experimentation Strategy

- **Goal: acoustic data transmission in an undersea environment**
 - First, develop experimental lab platform

- **Issue: transmission in water vs air**
 - Acoustic impedance – 1.5×10^6 vs 4.1×10^2 N-s/m2
 - Preferred transducer in air: electromagnetic (tweeter)
 - Preferred transducer in water: piezoelectric

- **Approach**
 - Design for piezoelectric
 - Add matching networks to enable testing in air
Low Power Wakeup Receiver

ACOUSTIC MODEM BLOCK DIAGRAM
Prototype Wake-Up Receiver

Tweeter Input

Single 5V supply 100 microAmp

AM Detector 2N3906 pnp

Tuned cascode amplifier Dual-gate MOSFETs w/LC loads

Output Buffer 74HC04

Wake-Up Tone Receiver
500 µWatt
ACOUSTIC MODEM BLOCK DIAGRAM

Data Receiver

HYDROPHONE OR MICROPHONE

WAKEUP RECEIVER

DATA RECEIVER

TRANSMITTER

POWER CONTROL

CONTROL LOGIC

LEVEL SHIFT & BUFFERING

PROJECTOR OR LOUDSPEAKER

+5 VOLT

TO CONTROLLER
Prototype Acoustic Receiver

- Four-stage design
 - LC-tuned FET cascode amplifiers
- Single-chip limiter (MAX921)
- FM balanced-slope demodulator
 - OPA2374 summing amp + signal diode rectifiers
- Single-chip output filter
 - LTC1569 switched-capacitor
- 5V supply
Transmitter

ACOUSTIC MODEM BLOCK DIAGRAM
Prototype Acoustic Transmitter

- 555-based Voltage-controlled Oscillator
- FET switch-mode output amplifier
- Single 5V supply
- Separate data & wake-up inputs
- Tweeter Output
- Output level selected by transformer tap
Initial Testing

- Prototype testing completed
- Wakeup Operational
- Closed Loop BER < 1×10^{-5} (across room)
Lessons Learned

- Software needs RSSI information
- Poor transmit efficiency
- 5 volt logic not compatible with mote
- Mote has limited I/O ports
Design Modifications

- Data Receiver provides RSSI
 - Philips SA604A IF Chip
- Transmitter efficiency improved
 - Texas Instruments TPA2000D1 amplifier
- Control/Data interface compatible with MOTES
 - 3.3 volt / 5 volt logic levels
 - Coded control logic to save IO pins
Block Diagram

ACOUSTIC MODEM BLOCK DIAGRAM
Rev 1.0 Production Prototype Board

Wake-up Receiver

I/O Logic

Data Receiver

Data Transmitter
Rev 1.0 Modem Hardware
Interface to Microcontroller

- Promote simple interfaces
- Use a minimal set of I/O pins
- Currently use Mica2 motes (Atmel ATmega128L MCU)
- Leverage TinyOS and existing sensor network software

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>I/O</th>
<th>Pin No.</th>
<th>Function</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>Both</td>
<td>9</td>
<td>Wake Int</td>
<td>Out</td>
</tr>
<tr>
<td>2</td>
<td>Vref (+3.3V)</td>
<td>In</td>
<td>10</td>
<td>RSSI</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>Tx Data</td>
<td>In</td>
<td>11</td>
<td>Analog Out</td>
<td>Out</td>
</tr>
<tr>
<td>4</td>
<td>Mode</td>
<td>In</td>
<td>12</td>
<td>Digital Out</td>
<td>Out</td>
</tr>
<tr>
<td>5</td>
<td>Data</td>
<td>In</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wake</td>
<td>In</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pwr 0</td>
<td>In</td>
<td>15</td>
<td>Vcc(+5V)</td>
<td>In</td>
</tr>
<tr>
<td>8</td>
<td>Pwr 1</td>
<td>In</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modem Control Interface

- **State control**
 - Each component can be individually powered on/off

- **Tx power control**
 - Currently has 4 levels: 15—33dBm

- **Wakeup interrupt**
 - Microcontroller can enter sleep mode, and be waken up by a wakeup tone

<table>
<thead>
<tr>
<th>Mode</th>
<th>Data</th>
<th>Wakeup</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Everything Off</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Wakeup Receiver is on</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Data Receiver is on</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Both Receivers are on</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Transmitter is ready</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Sending Wakeup tone</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Sending Data</td>
</tr>
</tbody>
</table>

Our modem provides fine-grained power control on each component
Modem hardware provides bit-level Tx and Rx

- Packet-level communication is implemented in software on microcontroller
 - Physical layer functions, e.g., start symbol detection and synchronization, coding, CRC
 - MAC protocol
 - Support for other protocols, e.g., timestamp, RSSI
- Can either work alone or connect to a host PC through the serial port
Modem Connected with Mote
Mote and Adapter
Modem Performance

- **Power Consumption**
 - Wakeup Rx: 100 uA @ 5 volts, 500 microwatts
 - Data Rx: 4 mA @ 5 volts, 20 milliwatts
 - Tx: > 80% efficient, 2.5 watts at max output

- **Sensitivity**
 - Wakeup Rx: 4 microvolts
 - Data Rx: 15 microvolts

- **Bandwidth**
 - Wakeup Rx: 300 Hz
 - Data Rx: 2000 Hz

- **Transmit Power**
 - Selectable: 32 mW, 125 mW, 500mW, 2 W
Modem Costs

- **Material Cost**
 - Based on quantity 100
 - Per board material cost about $37
 - All electronic components
 - Etched circuit boards

- **Assembly Cost**
 - ???
 - Need to avoid component selection
Transducer Costs

- **In air**
 - Audax tweeter ~$15

- **Underwater**
 - B & K 8103 ~$1730
 - Reson TC4013 ~$1000
 - Aquarian Audio H1-1 $79
 - Naval Postgraduate School
 - Konstantinos Bakas ~$50
 - Miguel Alvarez ~$30
 - MIT - Daniela Rus ???
Hardware Issues

- **Flicker Noise in FET**
 - Reduces sensitivity of Wakeup receiver

- **Producibility**
 - Tunable Inductors
 - Frequency Discriminator
 - Rev 1 PCB uses Quadrature Coil (hard to tune)
 - Will change to Pulse Counting demodulator (74HC221)
Noise Testing
Noise Spectrum
Conclusions

- Inexpensive short-range modem is feasible
- Ramping up internal use
- Final design will be released to public
 - PCB artwork
 - Schematic diagrams
 - Bill of Materials
 - Alignment/Tuning Instructions (if needed)

- Additional Information
 - http://www.isi.edu/ilense